(16x)^2+(9x)^2=24

Simple and best practice solution for (16x)^2+(9x)^2=24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (16x)^2+(9x)^2=24 equation:



(16x)^2+(9x)^2=24
We move all terms to the left:
(16x)^2+(9x)^2-(24)=0
We add all the numbers together, and all the variables
25x^2-24=0
a = 25; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·25·(-24)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{6}}{2*25}=\frac{0-20\sqrt{6}}{50} =-\frac{20\sqrt{6}}{50} =-\frac{2\sqrt{6}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{6}}{2*25}=\frac{0+20\sqrt{6}}{50} =\frac{20\sqrt{6}}{50} =\frac{2\sqrt{6}}{5} $

See similar equations:

| 8m^2+4m+3=0 | | 7c+14=7+2c | | 120-2x=86 | | x^2-16=-15 | | 120-2x=120 | | 4x+9/21/3=3x/0.5 | | (17x+21)+123=180 | | 2x-30+x+10=180 | | 16/71=n/9 | | 16/72=n/9 | | 7×+4=8+8x+2-4x | | x=15/2/3x=10 | | 7×+4=8+8x× | | 11x-9-6x=6x-5 | | (2x+15)+(2x+10)+x=180 | | (10x-26)+(7x+10)=180 | | 66.5=7(m+2.2) | | 4004=44(p+30) | | -4m+7=35 | | X+20+5x-40=180 | | 10x+5=-3 | | 2x+15+2x+10+x=180 | | 5w+3=13 | | 10x+7=10x-4 | | (23x-20)+(7x+50)=180 | | 5x+2x-7=8x+8-6x | | 2(x-3)=1/2(4x+12) | | 1=30+y | | 9x^2-4x-215=0 | | 8x^2=19x | | 5(3y-7)+y=3(y-3) | | 3+9x=63+x(3)-9x |

Equations solver categories